Based on K. H. Rosen: Discrete Mathematics and its Applications.

Lecture 14: The Division Algorithm. Section 4.1

1 The division algorithm

We are going to do some work in the ring \mathbb{Z} of integers.

1.1 Division

Definition 1. If a and b are integers with $a \neq 0$, we say that a divides b if there is an integer c such that $b=a c$, or equivalently, if $\frac{b}{a}$ is an integer. When a divides b we say that a is a factor or divisor of b, and that b is a multiple of a. The notation $a \mid b$ denotes that a divides b. We write $a \nmid b$ when a does not divide b.
Remark 2. Given positive integers d and n, there are exactly $\left\lfloor\frac{n}{d}\right\rfloor$ numbers less or equal than n that are divisible by d, they are $d, 2 d, 3 d, \ldots, k d$ where $k=\left\lfloor\frac{n}{d}\right\rfloor$.
Properties of integer divisibility:

1. $a \mid b$ and $a|c \Rightarrow a|(b+c)$.
2. $a|b \Rightarrow a|(b c)$ for all integers c.
3. $a \mid b$ and $b|c \Rightarrow a| c$.
4. $a \mid b$ and $a|c \Rightarrow a|(m b+n c)$ for any integers m, n.

1.2 The division algorithm

When an integer is divided by a positive integer, there is a quotient and a remainder, as the division algorithm shows.

Theorem 3. (THE DIVISION ALGORITHM) Let a be an integer and d a positive integer. Then there are unique integers q and r with $0 \leq r<d$, such that $a=d q+r$.
Definition 4. In the equality given in the division algorithm, d is called the divisor, a is called the dividend, q is called the quotient, and r is called the remainder. This notation is used to express the quotient and remainder:

$$
q=a \operatorname{div} d \quad r=a \bmod d
$$

Remark 5. Suppose that a is an integer and b a positive integer and we write

$$
a=b q+r .
$$

If the integer c divides a and b, then by properties of division, it would divide also $r=a-b q$. In other words, any integer that is a common divisor of two numbers a, b $(b>0)$, is also a divisor of the remainder of the division r of a by b.

1.3 Modular arithmetic

In some situations we care only about the remainder of an integer when it is divided by some specified positive integer.

Definition 6. If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides $a-b$. We use the notation

$$
a \equiv b(\bmod m)
$$

to indicate that a is congruent to b modulo m. We say that $a \equiv b(\bmod m)$ is a congruence and that m is its modulus (plural moduli). If a and b are not congruent modulo m, we write $a \not \equiv b(\bmod m)$

Theorem 7. Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that $a=b+k m$.

Proof. If $a \equiv b(\bmod m)$, by the definition of congruence, we know that $m \mid(a-b)$. This means that there is an integer k such that $a-b=k m$, so that $a=b+k m$. Conversely, if there is an integer k such that $a=b+k m$, then $k m=a-b$. Hence, m divides $a-b$, so that $a \equiv b(\bmod m)$.

Theorem 8. Let m be a positive integer.

$$
\begin{gathered}
\text { If } a \equiv b(\bmod m) \text { and } c \equiv d(\bmod m) \text { then } a+c \equiv b+d(\bmod m)) \\
\text { If } a \equiv b(\bmod m) \text { and } c \equiv d(\bmod m) \text { then } a c \equiv b d(\bmod m)
\end{gathered}
$$

Proof. We use a direct proof. Since we have If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, there are integers s and t such that $b=a+s m$ and $d=c+t m$. Hence,

$$
b+d=a+c+m(t+s) \text { and } b c=a c+m(a t+c s+s t m)
$$

and therefore

$$
a+c \equiv b+d(\bmod m) \text { and } a c \equiv b d(\bmod m)
$$

We can define arithmetic operations on \mathbb{Z}_{m}, the set of nonnegative integers less than m, that is, the set $\{1,2,3, \ldots, m-1\}$. In particular, we define addition of these integers, denoted by $+_{m}$ by

$$
a+_{m} b=(a+b) \bmod m
$$

where the addition on the right-hand side of this equation is the ordinary addition of integers, and we define multiplication of these integers, denoted by ${ }_{m}$ by

$$
a \cdot m b=(a \cdot b) \bmod m
$$

Properties of the modular operations:

1. (Closure) If $a, b \in \mathbb{Z}_{m}$, then $a+_{m} b, a \cdot_{m} b \in \mathbb{Z}_{m}$.
2. (Associativity) for $a, b, c \in \mathbb{Z}_{m}$ we have

$$
\left(a+_{m} b\right)+_{m} c=a+_{m}\left(b+_{m} c\right) \quad \text { and } \quad\left(a \cdot_{m} b\right) \cdot{ }_{m} c=a \cdot{ }_{m}\left(b \cdot{ }_{m} c\right)
$$

3. (Commutativity) If $a, b \in \mathbb{Z}_{m}$, then $a+_{m} b=b+_{m} a$ and $a \cdot_{m} b=b \cdot{ }_{m} a$.
4. (Identity elements) The element $0 \in \mathbb{Z}_{m}$ is the identity element for addition and 1 is the identity element for multiplication. In other words, if $a \in \mathbb{Z}_{m}$, then $a+{ }_{m} 0=a$ and $a \cdot{ }_{m} 1=a$.
5. (Additive inverses) If $a \in \mathbb{Z}_{m}$, then we have an additive inverse

$$
a+_{m}(m-a)=0 \text { for } a \neq 0 \quad \text { and } \quad 0+_{m} 0=0
$$

6. (Distributivity) for $a, b, c \in \mathbb{Z}_{m}$ we have

$$
a \cdot m\left(b+_{m} c\right)=a \cdot{ }_{m} b+_{m} a \cdot{ }_{m} c \quad \text { and } \quad\left(a+_{m} b\right) \cdot{ }_{m} c=a \cdot{ }_{m} c+_{m} b \cdot{ }_{m} c
$$

Remark 9. Because \mathbb{Z}_{m} with the operations of addition and multiplication modulo m satisfies the properties listed, \mathbb{Z}_{m} with modular addition is said to be a commutative group and \mathbb{Z}_{m} with both of these operations is said to be a commutative ring with unit. Note that the set of integers with ordinary addition and multiplication also forms a commutative ring.

